Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1180321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425997

RESUMO

Polymeric carbohydrates are abundant and their recycling by microbes is a key process of the ocean carbon cycle. A deeper analysis of carbohydrate-active enzymes (CAZymes) can offer a window into the mechanisms of microbial communities to degrade carbohydrates in the ocean. In this study, metagenomic genes encoding microbial CAZymes and sugar transporter systems were predicted to assess the microbial glycan niches and functional potentials of glycan utilization in the inner shelf of the Pearl River Estuary (PRE). The CAZymes gene compositions were significantly different between in free-living (0.2-3 µm, FL) and particle-associated (>3 µm, PA) bacteria of the water column and between water and surface sediments, reflecting glycan niche separation on size fraction and selective degradation in depth. Proteobacteria and Bacteroidota had the highest abundance and glycan niche width of CAZymes genes, respectively. At the genus level, Alteromonas (Gammaproteobacteria) exhibited the greatest abundance and glycan niche width of CAZymes genes and were marked by a high abundance of periplasmic transporter protein TonB and members of the major facilitator superfamily (MFS). The increasing contribution of genes encoding CAZymes and transporters for Alteromonas in bottom water contrasted to surface water and their metabolism are tightly related with particulate carbohydrates (pectin, alginate, starch, lignin-cellulose, chitin, and peptidoglycan) rather than on the utilization of ambient-water DOC. Candidatus Pelagibacter (Alphaproteobacteria) had a narrow glycan niche and was primarily preferred for nitrogen-containing carbohydrates, while their abundant sugar ABC (ATP binding cassette) transporter supported the scavenging mode for carbohydrate assimilation. Planctomycetota, Verrucomicrobiota, and Bacteroidota had similar potential glycan niches in the consumption of the main component of transparent exopolymer particles (sulfated fucose and rhamnose containing polysaccharide and sulfated-N-glycan), developing considerable niche overlap among these taxa. The most abundant CAZymes and transporter genes as well as the widest glycan niche in the abundant bacterial taxa implied their potential key roles on the organic carbon utilization, and the high degree of glycan niches separation and polysaccharide composition importantly influenced bacterial communities in the coastal waters of PRE. These findings expand the current understanding of the organic carbon biotransformation, underlying the size-fractionated glycan niche separation near the estuarine system.

2.
Ecotoxicology ; 30(9): 1826-1840, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34618290

RESUMO

Cold events had broadly affected the survival and geographic distribution of mangrove plants. Kandelia obovata, has an excellent cold tolerance as a true halophyte and widespread mangrove species. In this study, physiological characters and comparative proteomics of leaves of K. obovata were performed under cold treatment. The physiological analysis showed that K. obovata could alleviate its cold-stress injuries through increasing the levels of antioxidants, the activities of related enzymes, as well as osmotic regulation substances (proline). It was detected 184 differentially expressed protein spots, and of 129 (70.11%) spots were identified. These proteins have been involved in several pathways such as the stress and defense, photosynthesis and photorespiration, signal transduction, transcription factors, protein biosynthesis and degradation, molecular chaperones, ATP synthesis, the tricarboxylic acid (TCA) cycle and primary metabolisms. The protein post-translational modification may be a common phenomenon and plays a key role in cold-response process in K. obovata. According to our precious work, a schematic diagram was drawn for the resistance or adaptation strategy of mangrove plants under cold stress. This study provided valuable information to understand the mechanism of cold tolerance of K. obovata.


Assuntos
Rhizophoraceae , Resposta ao Choque Frio , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Rhizophoraceae/metabolismo , Estresse Fisiológico
3.
Ecotoxicology ; 30(9): 1808-1815, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34269924

RESUMO

In this study, Illumina MiSeq sequencing of the 16 S rRNA gene was used to describe the bacterial communities in the South China Sea (SCS) during the southwest monsoon period. We targeted different regions in the SCS and showed that bacterial community was driven by the effects of the river, upwelling, and mesoscale eddy through changing the environmental factors (salinity, temperature, and nutrients). Distinct bacterial communities were observed among different chemical conditions, especially between the estuary and the open sea. The abundance of Burkholderiales, Frankiales, Flavobacteriales, and Rhodobacterales dominated the estuary and its adjacent waters. Bacteria in cyclonic eddy were dominated by Methylophilales and Pseudomonadales, whereas Prochlorococcus, SAR11 clade, and Oceanospirillales had relatively high abundance in the anticyclonic eddy. Overall, the abundance of specific phylotypes significantly varied among samples with different chemical conditions. Chemical conditions probably act as a driver that shapes and controls the diversity of bacteria in the SCS. This study suggests that the interaction between microbial and environmental conditions needs to be further considered to fully understand the diversity and function of marine microbes.


Assuntos
Bactérias , Água do Mar , Bactérias/genética , China , Estuários , Oceanos e Mares , Filogenia , Rios
4.
Ecotoxicology ; 29(6): 684-690, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32394359

RESUMO

Tidal flooding can directly result in oxygen (O2) shortage, however the functions of root aeration in flooding tolerance and O2 dynamics within mangroves are still poorly understood. Thus, in this study, the correlations among waterlogging tolerance, root porosity and O2 movement within the plants were investigated using two mangrove species (Aegiceras corniculatum and Bruguiera gymnorrhiza) and a semi-mangrove Heritiera littoralis. Based on the present data, the species A. corniculatum and B. gymnorrhiza, which possessed higher root porosity, exhibited higher waterlogging tolerance, while H. littoralis is intolerant. Increased root porosity, leaf stoma, and total ROL were observed in the roots of A. corniculatum and B. gymnorrhiza growing in stagnant solution when compared to respective aerated controls. As for ROL spatial pattern along roots, external anaerobic condition could promote ROL from apical root regions but reduce ROL from basal roots, leading to a 'tighter barrier'. In summary, the present study indicated that the plants (e.g., A. corniculatum and B. gymnorrhiza) prioritized to ensure O2 diffusion towards root tips under waterlogging by increasing aerenchyma formation and reducing O2 leakage at basal root regions.


Assuntos
Primulaceae , Rhizophoraceae , Áreas Alagadas , Eutrofização , Oxigênio/metabolismo , Raízes de Plantas/fisiologia
5.
Ecotoxicology ; 29(6): 762-770, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32342292

RESUMO

Sediment quality caused by heavy metals was investigated in the Mirs Bay and Tolo Harbor, Hong Kong, China. Samples were collected in January and July, 2010. One-way analysis of variance showed that sediment quality variables (Fe, Zn, Mn, Pb, V, Cu, Cr, Ba, Ni and As) were significantly different (p < 0.05) among the sampling areas, whereas the average concentration of V, Eh and Ba exhibited the significant seasonal variations (p < 0.05) between January and July. The spatial pattern of heavy metals (Pb, Zn and Cu) can probably be attributed to anthropogenic and tidal flushing influence in the harbor. Both geo-accumulation index (Igeo) and enrichment factor (EF) were used to identify the metal pollution level and its related source. Pb, Zn, and Cu are considered as "polluted metal" in Tolo Harbor. Cluster analysis (CA) identified three distinct clusters with the Tolo Habor and Shatou Jiao, the inner bay and the south part of the bay. Principal component analysis (PCA) identified the spatial patterns and their affected parameters in the studying area. Results showed metals distribution in Mirs Bay and its adjacent area is principally affected by human activities such as marineculture, dumping, located mostly in Tolo Harbor and Shatou Jiao, where was closely related with anthropogenic influence. While the monitoring stations including MS13-MS16 and MS8 locating in the south part of the studying area might be corresponded to natural influence.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes Químicos da Água/análise , Baías , China , Análise por Conglomerados , Poluição Ambiental , Sedimentos Geológicos , Hong Kong , Análise de Componente Principal
6.
Ecotoxicology ; 29(6): 751-761, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32189146

RESUMO

Daya Bay is facing the influence of human activities and nature changes, which result in phytoplankton adjusting to the changing environment. The data about environmental changes and phytoplankton were obtained from four seasonal cruises in 2013 in the bay. It is helpful to explore seasonal succession of phytoplankton driven by the determining environmental factors in this bay. Temperature is a significant indicator of season change. The limiting factor of phytoplankton growth totally changed from P (PO4-P) limiting during the southwest monsoon to Si (SiO3-Si) limiting during northeast monsoon. The order of diatoms and dinoflagellates was the dominant phytoplankton groups in Daya Bay. The dominant species included chain-forming diatoms (Skeletonema, Pseudo-nitzschia, Thalassionema, Chaetoceros and Rhizosolenia) were found all the year round and filamentous cyanobacteria (Trichodesmium) in spring and autumn. Partial least square regression (PLS) found that salinity, temperature and nutrients were important driving force for phytoplankton seasonal succession.


Assuntos
Monitoramento Ambiental , Fitoplâncton , Baías , China , Cianobactérias , Diatomáceas , Dinoflagellida , Meio Ambiente , Análise dos Mínimos Quadrados , Salinidade , Estações do Ano , Temperatura
7.
J Hazard Mater ; 368: 523-529, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30710781

RESUMO

This is the first study exploring the effects of persistent Cr(VI) treatment on microbial communities and function as well as the process efficiency of an A2O system. The inhibitory effect was clearly higher at a high Cr(VI) concentration than a low Cr(VI) concentration, and different Cr(VI) concentrations had distinct effects on the microbial communities as well as on the performance efficiency of the system. Functional annotation analysis indicated that Cr(VI) stress inhibited most of the metabolic pathway and functional genes of the microbial communities, especially those involved in the denitrification pathway. Network analysis was used to investigate the co-occurrence patterns between denitrification genes and microbial taxa; the results indicated that microorganisms with functional genes had high diversity and were adversely affected by Cr(VI) exposure. This study is the first to establish a relationship between Cr(VI) stress and microbial communities and function as well as to determine the underlying mechanisms and roles of Cr(VI) in A2O sludge.


Assuntos
Cromo/toxicidade , Microbiota/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Reatores Biológicos , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , RNA Ribossômico 16S , Esgotos/microbiologia
8.
Mar Pollut Bull ; 112(1-2): 341-348, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27491363

RESUMO

Coastal water quality and trophic status are subject to intensive environmental stress induced by human activities and climate change. Quarterly cruises were conducted to identify environmental characteristics in Daya Bay in 2013. Water quality is spatially and temporally dynamic in the bay. Cluster analysis (CA) groups 12 monitoring stations into two clusters. Cluster I consists of stations (S1, S2, S4-S7, S9, and S12) located in the central, eastern, and southern parts of the bay, representing less polluted regions. Cluster II includes stations (S3, S8, S10, and S11) located in the western and northern parts of the bay, indicating the highly polluted regions receiving a high amount of wastewater and freshwater discharge. Principal component analysis (PCA) identified that water quality experience seasonal change (summer, winter, and spring-autumn seasons) because of two monsoons in the study area. Eutrophication in the bay is graded as high by Assessment of Estuarine Trophic Status (ASSETS).


Assuntos
Baías/química , Mudança Climática , Monitoramento Ambiental/métodos , Água do Mar/análise , Qualidade da Água , China , Análise por Conglomerados , Eutrofização , Humanos , Análise de Componente Principal
9.
Chemosphere ; 156: 212-219, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27179238

RESUMO

The anaerobic-anoxic-aerobic (A2O) process is a highly efficient sewage treatment method, which uses complex bacterial communities. However, the effect of copper on this process and the bacterial communities involved remains unknown. In this study, a systematic investigation of the effect of persistent exposure of copper in the A2O wastewater treatment system was performed. An A2O device was designed to examine the effect of copper on the removal efficiency and microbial community compositions of activated sludge that was continuously treated with 10, 20, and 40 mg L(-1) copper, respectively. Surprisingly, a decrease in chemical oxygen demand (COD) and ammonia nitrogen (NH4N) removal efficiency was observed, and the toxicity of high copper concentration was significantly greater at 7d than at 1d. Proteobacteria, Bacteroidetes, Acidobacteria, Chlorobi, and Nitrospirae were the dominant bacterial taxa in the A2O system, and significant changes in microbial community were observed during the exposure period. Most of the dominant bacterial groups were easily susceptible to copper toxicity and diversely changed at different copper concentrations. However, not all the bacterial taxa were inhibited by copper treatment. At high copper concentration, many bacterial species were stimulated and their abundance increased. Cluster analysis and principal coordinate analysis (PCoA) based on operational taxonomic units (OTUs) revealed clear differences in the bacterial communities among the samples. These findings indicated that copper severely affected the performance and key microbial populations in the A2O system as well as disturbed the stability of the bacterial communities in the system, thus decreasing the removal efficiency.


Assuntos
Bactérias/genética , Reatores Biológicos/microbiologia , Carbono/química , Cobre/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nitrogênio/metabolismo , Esgotos/microbiologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Análise da Demanda Biológica de Oxigênio , DNA Bacteriano/genética , Metagenoma , Águas Residuárias/química
10.
Ecotoxicology ; 24(7-8): 1478-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25956981

RESUMO

Microbial communities are highly diverse in coastal oceans and response rapidly with changing environments. Learning about this will help us understand the ecology of microbial populations in marine ecosystems. This study aimed to assess the spatial and vertical distributions of the bacterial community in the northern South China Sea. Multi-dimensional scaling analyses revealed structural differences of the bacterial community among sampling sites and vertical depth. Result also indicated that bacterial community in most sites had higher diversity in 0-75 m depths than those in 100-200 m depths. Bacterial community of samples was positively correlation with salinity and depth, whereas was negatively correlation with temperature. Proteobacteria and Cyanobacteria were the dominant groups, which accounted for the majority of sequences. The α-Proteobacteria was highly diverse, and sequences belonged to Rhodobacterales bacteria were dominant in all characterized sequences. The current data indicate that the Rhodobacterales bacteria, especially Roseobacter clade are the diverse group in the tropical waters.


Assuntos
Bactérias/classificação , Microbiota , Água do Mar/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , China , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Eletroforese em Gel de Gradiente Desnaturante , Meio Ambiente , Dados de Sequência Molecular , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Análise Espacial
11.
PLoS One ; 9(11): e111892, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364820

RESUMO

Pyrosequencing of the 16S ribosomal RNA gene (rDNA) amplicons was performed to investigate the unique distribution of bacterial communities in northern South China Sea (nSCS) and evaluate community structure and spatial differences of bacterial diversity. Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes constitute the majority of bacteria. The taxonomic description of bacterial communities revealed that more Chroococcales, SAR11 clade, Acidimicrobiales, Rhodobacterales, and Flavobacteriales are present in the nSCS waters than other bacterial groups. Rhodobacterales were less abundant in tropical water (nSCS) than in temperate and cold waters. Furthermore, the diversity of Rhodobacterales based on the gene transfer agent (GTA) major capsid gene (g5) was investigated. Four g5 gene clone libraries were constructed from samples representing different regions and yielded diverse sequences. Fourteen g5 clusters could be identified among 197 nSCS clones. These clusters were also related to known g5 sequences derived from genome-sequenced Rhodobacterales. The composition of g5 sequences in surface water varied with the g5 sequences in the sampling sites; this result indicated that the Rhodobacterales population could be highly diverse in nSCS. Phylogenetic tree analysis result indicated distinguishable diversity patterns among tropical (nSCS), temperate, and cold waters, thereby supporting the niche adaptation of specific Rhodobacterales members in unique environments.


Assuntos
Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , DNA Ribossômico/genética , RNA Ribossômico 16S/genética , Microbiologia da Água , China , Oceanos e Mares
12.
Tree Physiol ; 34(6): 646-56, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24965807

RESUMO

Metal pollution has been widely reported in mangrove wetlands; however, the mechanisms involved in metal detoxification by mangroves are still poorly understood. This study aimed to investigate the possible function of root anatomy and lignification/suberization on metal uptake and tolerance in seedlings of six species of mangroves. The results revealed that the three rhizophoraceous species (Bruguiera gymnorrhiza (L.) Poir, Kandelia obovata Sheue, Liu & Yong and Rhizophora stylosa Griff) consistently exhibited higher metal tolerances than the three pioneer species (Aegiceras corniculatum (Linn.) Blanco, Acanthus ilicifolius L. and Avicennia marina (Forsk.) Viern.). Moreover, metal-tolerant species often exhibited a thick exodermis with high lignification and suberization. The tolerance indices of the mangroves were found to be positively correlated with the amounts of lignin and suberin deposition within the exodermal cell walls. The observed metal uptake by the excised roots further illustrated that a lignified/suberized exodermis directly delayed the entry of metals into the roots, and thereby contributed to a higher tolerance to heavy metals. In summary, the present study proposes a barrier property of the lignified/suberized exodermis in dealing with the stresses of heavy metals, such that the mangroves which possessed more extensive lignification/suberization within the exodermis appeared to exhibit higher metal tolerance.


Assuntos
Cobre/metabolismo , Chumbo/metabolismo , Rhizophoraceae/fisiologia , Zinco/metabolismo , Transporte Biológico , China , Lignina/análise , Lignina/metabolismo , Lipídeos/análise , Microscopia Eletrônica de Varredura , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Rhizophoraceae/anatomia & histologia , Rhizophoraceae/efeitos dos fármacos , Plântula/anatomia & histologia , Plântula/efeitos dos fármacos , Plântula/fisiologia , Especificidade da Espécie , Áreas Alagadas
13.
Curr Microbiol ; 68(6): 756-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24531645

RESUMO

Mangrove sediment is susceptible to anthropogenic pollutants, including polycyclic aromatic hydrocarbons (PAHs). However, the effects of PAHs on the bacterial diversity in mangrove sediment have been rarely studied. In the present study, the effects of three types of PAHs (Naphthalene, Fluorene, and Pyrene) at three doses on sediment microbial populations were investigated by using denaturing gradient gel electrophoresis (DGGE). After 7 and 24 days of incubation of the three types of PAHs, markedly different patterns were observed in the bacterial communities. Overall, the diversity of bacterial community was suppressed before 7 days but was promoted after 24 days. Multidimensional scaling analysis suggested that the composition of bacterial communities after 7 days was distinctly distant from that after 24 days. Also despite a slight shift of bacterial abundance, the bacterial communities were relatively steady in these sediments after exposure to PAHs. In addition, DGGE suggested that the applications of three PAHs (especially PYR) had considerable effects on bacterial communities. For phylogenetic analysis, bacteria species belonging to Proteobacteria (α-, ß-, and γ-), Actinobacteria, Chloroflexi, Bacteroidetes, and Planctomycetes were changed dramatically after treatment with PAHs. These results suggest that PAHs play key roles in the change of bacterial community, which may be important for understanding the relationship between PAHs and sediment microbial ecology.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Appl Microbiol Biotechnol ; 98(2): 875-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23558584

RESUMO

Bacterial community compositions were characterized using denaturing gradient gel electrophoresis analysis of bacterial 16S rRNA gene in the sediments of the Pearl River estuary. Sequencing analyses of the excised bands indicated that Gram-negative bacteria, especially Gammaproteobacteria, were dominant in the Pearl River estuary. The diversity of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD) gene in this estuary was then assessed by clone library analysis. The phylogenetic analyses showed that all PAH-RHD gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to the nagAc gene described for Ralstonia sp. U2 or nahAc gene for Pseudomonas sp. 9816-4, while the PAH-RHD gene sequences of Gram-positive bacteria (PAH-RHD[GP]) at sampling site A1 showed high sequence similarity to the nidA gene from Mycobacterium species. Meanwhile, molecular diversity of the two functional genes was higher at the upstream of this region, while lower at the downstream. Redundancy analysis indicated that environmental factors, such as NH4--N, ∑PAHs, pH, SiO3--Si, and water depth, affected the distribution of the PAH-RHD[GN] gene in the Pearl River estuary.


Assuntos
Bactérias/enzimologia , Dioxigenases/metabolismo , Sedimentos Geológicos/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Rios/microbiologia , Bactérias/classificação , Bactérias/genética , Biota , China , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Dioxigenases/genética , Estuários , Variação Genética , Dados de Sequência Molecular , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Ecotoxicology ; 21(6): 1651-60, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22699412

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are of great environmental and human health concerns due to their widespread occurrence, persistence and carcinogenic properties. There is now compelling evidence that the mangrove sediment microbial structure is susceptible to PAHs contamination. The study aimed to assess the effects of PAHs on the nitrogen-fixing bacterial community of mangrove sediment. Three types of PAHs, naphthalene (NAP), a two-ring PAH; fluorene (FLU), a three-ring PAH; and pyrene (PYR), a four-ring PAH; were applied at three doses. After 7 and 24 days of incubation, the nitrogen-fixing bacterial population and diversity were evidenced in the nifH gene polymerase chain reaction denaturing gradient gel electrophoresis profile. DGGE pattern shows that the nitrogen-fixing bacterial community changed significantly with the types and doses of PAHs, and the incubation time. As far as single PAH is concerned, high concentration of PAH has larger impact on the nitrogen-fixing bacteria than low concentration of PAH. Besides, among the three types of PAHs, NAP has the greatest short term toxicity; PYR has the strongest long-term impact, whereas FLU has relatively higher long-time effect. Multidimensional scaling analysis and correspondence analysis are two reliable multivariate analysis methods for investigating the relationship between the nitrogen-fixing bacterial community and PAHs contamination. Investigating the effect of PAHs on the nitrogen-fixing bacterial diversity could yield useful information for understanding the process of biogeochemical cycling of nitrogen in mangrove sediment. The present study reveals that nitrogen-fixing bacterial community can be used as an important parameter indicating the impact of PAHs on mangrove sediment ecosystem.


Assuntos
Bactérias/genética , Fluorenos/metabolismo , Sedimentos Geológicos/química , Naftalenos/metabolismo , Fixação de Nitrogênio/efeitos dos fármacos , Pirenos/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biodiversidade , Fragmentação do DNA , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Ecossistema , Monitoramento Ambiental/métodos , Fluorenos/análise , Sedimentos Geológicos/microbiologia , Análise Multivariada , Naftalenos/análise , Oxirredutases/genética , Oxirredutases/metabolismo , Pirenos/análise , Rhizophoraceae/microbiologia , Análise de Sequência de DNA
16.
Ecotoxicology ; 21(6): 1669-79, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22707093

RESUMO

Spatial distribution, diversity and composition of bacterial communities of the northern South China Sea (SCS) surface water and the relationship with the in situ environmental chemistry were investigated. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was used to investigate the bacterial community structure. The DGGE gel showed that each sample harbored a distinct bacterial community structure and spatial variations of bacterial community composition among all samples were obviously. A total of 17 intensive bands were excised and the sequence analysis of these DGGE bands revealed that Proteobacteria were the dominant bacterial group of surface water in the north part of SCS. Results of the taxonomic analysis showed that the communities consisted of Proteobacteria (α-subdivision, ß-subdivision, γ-subdivision), Actinobacteria, Cyanobacteria, Bacteroidetes and Firmicutes. Unweighted pair group method with arithmetic averages clustering of the sampling stations indicated that all stations were classified mainly based on geographical proximity. Canonical correspondence analysis (CCA) was employed to further investigate the relationships between DGGE band pattern and the environmental variables and the first two CCA ordination axes suggested that the structure of the bacterial community was significantly correlated with the variables of nitrate (F = 1.24, P < 0.05).


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Água do Mar/microbiologia , Microbiologia da Água , Bactérias/genética , Biodiversidade , China , Análise por Conglomerados , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante/métodos , Análise Multivariada , Nitratos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Água/química
17.
Int J Environ Res Public Health ; 8(7): 2951-66, 2011 07.
Artigo em Inglês | MEDLINE | ID: mdl-21845168

RESUMO

Data collected from 12 stations in Daya Bay in different seasons in 2002 revealed the relation between water quality and phytoplankton response patterns. The results showed that Daya Bay could be divided into wet and dry seasons by multivariate statistical analysis. Principal component analysis indicated that temperature, chlorophyll a and nutrients were important components during the wet season (summer and autumn). The salinity and dissolved oxygen were the main environmental factors in the dry season (winter and spring). According to non-metric multidimensional scaling, there was a shift from the large diatoms in the dry season to the smaller line-chain taxa in the wet season with the condition of a high dissolved inorganic nitrogen and nitrogen to phosphorous concentration ratio. Nutrient changes can thus alter the phytoplankton community composition and biomass, especially near the aquaculture farm areas. There was no evidence of an effect of thermal water from the nearby nuclear power plants on the observed changes in phytoplankton community and biomass in 2002.


Assuntos
Fitoplâncton/fisiologia , Qualidade da Água , Aquicultura , Baías , Biodiversidade , Biomassa , China , Meio Ambiente , Análise Multivariada , Centrais Nucleares , Fitoplâncton/classificação , Análise de Componente Principal , Estações do Ano , Temperatura
18.
Int J Environ Res Public Health ; 8(6): 2352-65, 2011 06.
Artigo em Inglês | MEDLINE | ID: mdl-21776234

RESUMO

The objective is to identify the spatial and temporal variability of the hydrochemical quality of the water column in a subtropical coastal system, Daya Bay, China. Water samples were collected in four seasons at 12 monitoring sites. The Southeast Asian monsoons, northeasterly from October to the next April and southwesterly from May to September have also an important influence on water quality in Daya Bay. In the spatial pattern, two groups have been identified, with the help of multidimensional scaling analysis and cluster analysis. Cluster I consisted of the sites S3, S8, S10 and S11 in the west and north coastal parts of Daya Bay. Cluster I is mainly related to anthropogenic activities such as fish-farming. Cluster II consisted of the rest of the stations in the center, east and south parts of Daya Bay. Cluster II is mainly related to seawater exchange from South China Sea.


Assuntos
Baías/análise , Qualidade da Água/normas , China , Monitoramento Ambiental/métodos
19.
Wei Sheng Wu Xue Bao ; 47(5): 882-7, 2007 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-18062267

RESUMO

To isolate more unique and previously unrecognized bacteria in soil samples, the culture difference under three incubation modes was investigated by using trophic, low-nutrient broth and soil extract as growth medium. Plate count proved that the oligotrophic medium resulted in a slow growth and consecutive colony formation over the course of incubation. On the 5th day, the most number of colony-forming unit was found on trophic LB and low-nutrient R2A, which was approximate 5 times as many as that isolated on 0.1 x LB. Of the 7 media, LB broth harvested the maximum bacterial communities, and novel species could be isolated as the nutrient was diluted to appropriate extent. The DGGE patterns of oligotrophic and rich nutrient culture collection displayed low similarity, however, the bands at various lanes exhibited complementary effect. When cultivated with static flask, LB and R2A media obtained more bacterial species, which concluded most species isolated by the other five media. Under the test tube incubation mode, the most species was also found in LB medium except some appeared only on R2A and TSB. Apparent bacterial communities difference could be detected between R2A, LB and TSB media. The experiment data may contribute much to the special medium design as well as improvement of bacterial culturability by using proper medium.


Assuntos
Bactérias/crescimento & desenvolvimento , Meios de Cultura , Microbiologia do Solo , Bactérias/genética , Eletroforese em Gel de Poliacrilamida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...